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Liu Hui and the First Golden Age 
of Chinese Mathematics 

P H I L I P  D.  S T R A F F I N ,  J R .  
Beloit College 

Beloit, WI 5351 1 

Introduction 

17eiy- little is lzno\vr~ of the life of Liu Hui, except that he lived in the Kingdoill of Wei 
in the third centuiy A.D., ~7lle11 China was divided into three lungdoins at coiltiilual 
mar \vith one another. R7l1at is lznomn is that Liu was a inathematician of great po~ver 
and creativity. Liu's ideas are preseilred in ix7o works ~vhich sui~ived and becaine 
classics in Chinese matheinatics. The inost iillportailt of these is his coinmentaiy-, 
dated 263 A.D., on the Ji~izltntzg srln~zslz~i, the great problem book l<no\i7n in the R7est 
as the Nine Chnptets on tlze Alnthelnnticnl At?. The second is an independeilt \vork on 
inathematics for sui-veying, the Hnidno sunt!jit~g, lzno\vn as the Sen Island fifnthelnnti- 
cnl fifnnlinl. 

In this paper I mould like to tell you about some of the reinarkable results and 
inethods in these two morlzs. I thiillc they should be inore widely lznomn, for several 
reasons. First, we and our students should lznom inore about illatheiilatics in other 
cultures, and we are less fainiliar \\.it11 Chiilese inatheinatics than with the 
Greek, Indian, and Islanlic traditions more directly linked to the historical develop- 
meilt of inodern mathematics. Second, \Yestern mathematicians ~ v h o  do know 
soinethiilg ahout the Chiilese tradition often characterize Chiilese matheinatics as 
calculational and utilitarian rather than theoretical. Chinese matheinaticians, it is said, 
developed clever inethods, hut did not care about inatheinatical justificatioil of those 
methods. For exainple, 

Matheinatics was ovei~vheliniilgly concerned \1.ith practical illatters that 
were iinportailt to a bureaucratic govenlment: land iileasuremeilt and 
surve)ing, taatioil, the makiilg of canals a i d  dilces, granary dimensions, 
and so on .  . . Little mathematics v7as undertaken for its owl  sake in China. 
[2, 11. 261 

\T7hile there is justice in this generalization, Liu Hui and his successors Zu 
Chongzl~i and Zu Geilgzhi were clearcut exceptions. Their inethods were different 
from those of the Greeks, but they gave argumeilts of cogency and clarity \vl~ich we 
can honor toclay, and soine of those arguinents involved infinite processes which v7e 
recognize as uilderlyiilg the integral calculus. 

My final reason is that I tlliillc mathematical genius should he honored wherever it 
is found. I hope you \\.ill agree that Liu Hui is deseiviilg of our honor. 

To uilderstaild the context of Liu's \vorlz, we must first consider the state of Chinese 
inatheinatical coinputatioil in the third centuiy A.D. \Ye \\ill the11 look at the general 
nature of the Nine Clznptets and Liu's coinineiltaiy on it, and at Liu's Sen Islntzcl 
Alathe~nnticnl Alnlzrinl. I will then focus on three of Liu's inost reiilarkable achieve- 
meilts in geoinetiy--his calculation of IT ,  his clerivatioil of the voluine of pyramidal 
solids, and his work on the volume of a sphere and its coinpletioil by Zu Gengzhi. 
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Chinese Calculation in the First Century A.D. 

From at least the period of the Warring States (475-221 B.C.) a base ten positioilal 
nuinher system was ill coininoil use in China [12]. Calculations v7ere done using rods 
made from bone or bamboo, on a counting board marltecl off into squares. The 
i1umerals froin 1 to 9 were represented by rods, as in FIGURE 1. Their placeineilt in 
squares, from left to right, represented decreasing powers of ten. Rods represeiltiilg 
odd powers of ten were rotated 90" for clarity in clistii~g~~ishii~g the powers. A zero was 
represented siinply by a blaillc square, called a Jcong, ~vhei-ethe illarltiilg into squares 
prevented the ambiguity soinetiines present in, say, the Babylonian nuinber system. 

FIGURE 1 

Numerals and the division algorithln 


There were efficient algorithins for addition, subtraction, inultiplicatioi~, and divi- 
sion. For example, the di\ision algorithln is sho\vi~ in FIGU~ZE 1,except that you should 
iinagiile the operations being done rapidly with actual sticks. Kotice the close 
relationship to our modern long division algorithm, although subtractioil is easier 
because sticks are physically removed. I11 fact, it is identical to the division algorithm 
given by al-~llvvarizil;i in the ninth centuq7 and later trailsinitted to Europe, raising 
the coinplicated problem of possible trai1sinissioil through India to the \Vest [12] (See 
[17] for a coilsei-vative discussion.) 

Notice ho\v the answer 726; ends up \\it11 726 in the top row, and then 4 above 9. 
This led Chinese calculators to represent fractions by placing the nuinerator above the 
deiloininator on the couilting board. By the tiine of the Nine Clznpters there v7as a 
completely developed arithinetic of fractions: they could be multiplied, divided, 
coinpared by cross inultiplication, and reduced to lowest form using the "Euclidean 
algorithm" to find the largest coinmon factor of the numerator and denoiniilator. 

nil + bcAddition was performed as " + 4 = -, and then the fraction was reduced if 
b il hi1 

necessaiy. In the Nine Clzapters, 1 G O  of the 246 problenls involve coinputatioils \tit11 
fractions [I I]. 

We \till see that Chapter Eight of the Ni i~e  Chapters solves systems of linear 
equations by the inethod known in the West as "Gaussian Eliinination" after C. F.  
Gauss (1777-1855), which, of course, involves subtractiilg one rov7 of iluinbers from 
another. In the course of such calculations, it is inevitable that negative iluinbers \\ill 
arise. This presented no probleins to Chinese calculators: kt70 colors of rods were 
used, and correct rules v7ere given for manipulatiilg the colors. Liu Hui suggested in 
his coinmentary on the Nine Clzapteis that negative nuinhers be treated abstractly: 
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ll'hen a ilumber is said to be negative, it does not necessarily mean that 
there is a deficit. Similarly, a positive iluinber does not ilecessarily inean 
that there is a gain. ~herkfore ,  even though there are red (positive) and 
black (negative) ilumerals in each column, a change in their colors 
resulting from the operatioils will not jeopardize the calculation. [17, 
pp. 201-2021 

Perhaps inost remarlzably, Chinese illatheinaticiails had developed by the time of 
the Nine Chnptei-s efficient algorithms for coinputing square roots and cube roots of 
arbitrarily large numbers. The algorithnl for the square root coinputed the root digit 
by digit, by the same inethod \vhich used to be taught in Ainericail scl~ools before the 
coiniilg of the calculator. Martzloff [17] \vorlts through an example, and Laill [ I l l  
shows how it mould look on a couiltiilg board. The algorithin for finding cube roots 
mas similar, although, of course, inore coinplicated. 

111 other words, by the time of the Nine Clznpters the Chiilese had developed a 
iluinber systein and a collectioil of calculatioilal algorithills essentially equivalent to 
our inoderil system, wit11 the exception of decimal fractions. 

Nine Chapters on the Mathematical Art 

Nine Clzapters on the Alntlzenznticnl Art is a coinpilatioil of 246 matheinatical 
problems loosely grouped in nine chapters. Soine of its inaterial predates the great 
book-burning and burial-alive of scholars of 213 B.C., ordered by emperor Shill 
Huang-ti of the Qin dynasty. Indeed, Liu Hui writes in the preface of his coinmen- 
taiy: 

In the past, the tyrant Qiil burnt written documents, \vhich led to the 
destructioil of classical kilowledge.. . Because of the state of deterioration 
of the ailcieilt texts, Zhang Cailg and his team produced a new version. . . 
filling in what v7as missing. [17, p. 1291 

It is believed that the Nzrze Clznpters were put in their final forin soinetime before 
100 A.D. It "became, in the Chinese tradition, the inaildatoiy reference, the classic of 
classics." [17, p. 141 At the time of this writing there is no coinplete Eilglish 
translation of the Nine Clznpters, although there are inally scholarly Chinese editions, 
and trailslatioils into Japanese, Germai~, and Russian. A11 Eilglis1-1 translation by J ,  N. 
Crossley and Shen Kangsheng is in preparation, to be published by Springer-I'erlag. 
For summaries, see [ l l ] ,  [17], [ la],  [21] 

The format of the Nine Clznpters is terse: a problem, its answer, and a recipe for 
obtaining the answer. Usually no justificatioil is given for the method of solution. Just 
the facts. 

Chapter One has many probleins on the arithmetic of fractions, and a section on 
computiilg areas of planar figures, \tit11 correct forinulas for rectangles, triangles, and 
trapezoids. Here's a problem on the area of a circle: 

1.32: There is a circular field, circuinfereilce 181 bu and diaineter 604 bzi. Find the 
area of the field. 

Method: Mutually multiply half of the circumfereilce and half of the diameter to 
obtain the area in bu. 0; multiply the diaineter by itself, then by 3 and divide 
by 4. Or il~ultiply the circumference by itself and divide by 12. [ l l ,  p. 131 
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The first inethod is correct, but the data of the probleln and the other two neth hods 
assulne that the ratio of the circuinfereilce of a circle to its diameter, \vhich we call T, 
is three. This assumption is made throughout the Nine Chnpter.~. 

Chapter Two is a series of cominodity exchailge problems illvolvi~lg proportions. 
Chapter Three concerns problems of "fair division." The solutioils given may not 
seem veiy- fair to us: 

3.8: There are five persons: Dai Fu, Bu Geng, Zail Niao, Shang Zao, and Gong Shi. 
They pay a total of 100 qinn. A co~nlnalld desired that the highest rank pays the 
least, and the successive ones gradually more. Find the amount each has to pa)< 

Answer: Dai FLI pays 8% qinn; Bu Geilg pays 10% qinn; Zail Niao pays 14% 
qinn; Shallg Zao pays 21- qintz; Gong Shi pays 43% qinn. [ l l , p. 211 

The inethod calls for dividing the cost in proportions : 4 : : : 1, \vl~ich gives 
practice in adding fractioils, but badly exploits the lo\vest rank person! 

Chapter Four contains problems aslzi~lg for the calculatioil of square roots and cube 
roots. The last problenl of Chapter Four is 

4.24: There is a sphere of volunle 16441866437500 chi. Find the diameter. 

Ans\ver: 14300 chi. 
Method: Put do\vi~ the voluine in clzi, multiply by 16 and divide by 9. Extract 
the cube root of the result to get the diameter of the sphere. [ l l ,11. 231 

This gives the formula 17 = Ad for the volullle of a sphere in terins of its diameter, 
\vhich isn't correct even if we take . i ~= 3. 

Chapter Five asks for the volumes of a llumber of solids, includiilg several different 
lziilds of pyramids, frust~~ius of pyrainids, coiles and their frustums, and a wedge with a 
trapezoidal base. The given formulas are all correct, but no hint is given of 1 1 0 ~ 7  they 
were derived. 

Chapter Six deals with fair clivisioil in a ~nuch  more realistic may than the probleills 
in Chapter Three. There are probleins on transporting grain, taxation, and irrigation. 
There are also some less realistic probleiils which make one ~voilder 1 1 0 ~ 7  Cl~iilese 
students ~ilust have felt about "~701-d problems": 

6.14: There is a rabbit \vl~ich walks 100 611before it is chased by a dog. '\l7llen the dog 
has gone 250 b ~ i ,it stops and is 30 bu behind the rabbit. If the dog did not 
stop, find ho\v many inore bil it ~ v o ~ l d  have to go before it reaches the rabbit. 

Answer: 107; btl. [ l l , p. 281 

Chapter Seven has a llunlber of problenls iilvolving kt70 linear equations in kt70 

unknowns, usually solved by the method of "false position." Problems in Chapter 
Eight iilvolve solving n linear equatioils in n unkno\vns for n up to 3. The illethod of 
solution, described in detail, is Gaussian elimination on the appropriate inatrix 
represented on the counting board. The Chinese called this inethod fnngcheng. See 
[17] for an extended example. Perhaps the most interesting probleln is 

8.13: There are five fiainilies ~vhich share a ~7ell. 2 of A's ropes are short of the well's 
depth by 1of B's ropes. 3 of B's ropes are short of the depth hy 1of C's ropes. 4 
of C's ropes are short by 1 of D's ropes. 5 of D's ropes are short by 1 of E's 
ropes. 6 of E's ropes are short by 1of A's ropes. Find the depth of the ~7ell  and 
the length of each rope. 

Ans\ver: The well is 721 cun deep. A's rope is 265 ctln long. B's rope is 191 c ~ ~ i z  
long. C's rope is 148 ctln long. D's rope is 129 ciin long. E's rope is 76 tun 

long. [ l l , 11. 371 
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Kotice that this problem involves five equations and six unlzno~vns, and thus is 
indeterminate. Liu Hui pointed out that the solution gives only the necessaiy 
proportions for the lengths. It is also the smallest solution in integer lengths. 

The problems in Chapter Nine involve right triangles and the "Pythagorean" 
theorem, wvllich had long been independently lzno\vn in China, \vhere it was called the 
gozc-gzc theorein [26]. No proof is given of this theorem, or of a correct forlllula for 
the diameter of the inscribed circle in a right triangle. Similar right triangles are used 
to solve surveying problems involving one uilkilown distance or length. 

Liu Hui's Commentary 

The Nine Chapters presents its solution lnethods \vithout justification. Liu Hui in his 
commentary set hiinself the goal of justifj~ng those methods. One reason v7as 
practical, as Liu \vrote about the Nine Chapters' use of 3 for the ratio of the 
circumference of a circle to its diameter: 

Those wvho transinit this method of calculation to the next gener a t' ,on 
never bother to examine it thoroughly but merely repeat what they learned 
from their predecessors, thus passing on the error. Without a clear 
explanation and definite justification it is very difficult to separate truth 
from fallacy. [20, p. 3491 

Another reason has to do with seeing and appreciating the logical structure of 
mathematics: 

Things are related to each other through logical reasons so that like 
branches of a tree, diversified as they are, they nevertheless come out of a 
single trunk. If we elucidate by prdse and ilkstrate by pictures, then we 
may be able to attain conciseness as well as coinprehei~siveness, clarity as 
well as rigor. [20, p. 3551 

In this section, we'll begin our examination of Liu's attempt to attain "clarity as well as 
rigor" bv looking at five of his contributions. 

~roblkins in Chapter Four of the Nine Clznptei-s require talung square roots using 
the square root algorithm. To take the square root of a 2k + 1or 2 k + 2 digit nunlber 
A7, the algorithm begins by finding the largest nuinber A, = no X 10" vvhere no is a 
digit, such that A: IN. Then compute N, = N -A:. Now find the largest A, = 

a, X lok- '  such that A1(2 A, + A,) IN,, and form Nq = N1 -A1(2 A. + A,). Con- 
tinue in this manner. If N is a perfect square, its square root mill be the (1c + 1)-digit 
number S = aoal  ... a k .  

Liu Hui first gives a geometric argument, similar to arguinents used in Greek 
geometric algebra, to explain ~ l l y  the algorithm ~vorks. Consider FIGUIZE 2, \vllich is 
not to scale. (Liu's original figures were all lost, but most of them are easy to 
reconstruct from his verbal descriptions.) From a square of area A7, we first subtract a 
square of side A,, then the L-shaped figure of width A,, wvllich the Greelts called a 
gnomon, then a gilomon of \iidth A,, and so on until we exhaust the square. 

TVell, at least we exhaust the square if A7 is a perfect square, as it is in many of the 
Nine Chnpter.~ problems. (Some of the problems involve rational perfect squares, for 
instance N = 564752i in problem 4.15.) But Liu also asks what happens if N is not a 
perfect square: "In this case it is not sufficient to say what the square root is about by 
si~nply ignoring the [remaining] gnomon." [7, p. 2111 For integral but non-square N, 
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An A ,  A ,  ... 
FIGURE 2 

Geometiy of the square root algorithm. 

the square root algorithm yields N = S' + R,  where O < R < 2S + 1 Liu gives two 
ways of approxiinating the square root. The first is to take a rational approxiination 
using 

The second is even inore interesting. If we continue the algorithin on the countiilg 
board past the last digit of N,we get 

The ancient Chinese had naines for the fractions 1/10' for 1c up to five. Liu suggests 
continuing the calculatioil down to "those small numbers for which the units do not 
have a name," and if necessary adding a fraction to a,,, ,to get even greater accuracy 
[Ill. In other words, it is not stretching very ~nuch  to say that Liu Hui invented 
decimals; he certainly invented their calculatlonal equivalent. '\Ve will see that he 
needed this kind of accuracy for his calculatioil of n-. Liu also gave a justification for 
the cube root algorithin using a three-diinensional figure siinilar to FIGURE2. 

Chapter Eight of the A7ine Clznpters solved systeills of linear equations using the 
fnngclzerzg inethod on a counting board matrix: inultiples of rows (actually columns, 
since the equations were set up vertically on the counting board) were systeinatically 
subtracted froin other rows to reduce the inatrix to triangular form. Liu Hui explains 
that the goal of this inethod is to reduce to a ininiinuin the nuinber of cornputations 
needed to find the solution. "generally, the inore economic a method is, the better it 
is." I11 fact, Liu coinpares bvo different fnngcherzg inethods for solving problem 8.18 
by counting the nuinber of counting board operations needed in each inethod [17]. 
Surely this is the first exanlple in histoly of an operation count to coinpare the 
coinputational efficiency of two algorithms. 
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Finally, Chapter Nine of the A7ine Chapters presented, ~vithout justification, 
solutions to a nuinber of probleins involving right triangles. Liu Hui justified these 
solutioils by a series of ingenious "dissection" arguments, based on the principles that 
congruent figures ha\,e the same area, and that if we dissect a figure into a finite 
nuinber of pieces, its area is the suin of the areas of the pieces. I'll give two examples. 

The solution to problem 9.16 finds the diameter cl of a circle inscribed in a right 
triangle ~vith legs n and b and hypotenuse c by 

Liu's dissection proof of this result call be reconstructed as in FIGURE3 [20]. See it? 
For the second example, consider the fainous gorl-gzb theorein that for a right 

triangle as above, a% b6"= c'. For this theorem, Liu's verbal description of his 
proof is as follows: 

The shorter leg multiplied by itself is the red square, and the longer leg 
multiplied by itself is the blue square. Let thein be inoved about so as to 
patch each other, each according to its type. Because the differences are 
completed, there is no instability. They forin together the area of the 
square on the hypotenuse. [31, p. 711 

d 
FIGURE 3 

Diaineter of a circle i~lscrihed in a right triangle. 

Clearly, Liu had a dissection proof of the gou-gu theorein. Just as clearly, the 
verbal description does not enable us to reconstruct Liu's diagram. FIGURE 4 shows two 
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red 

(4 ( 0 )  

FIGURE 4 
Dissection proofs of the gou-gu theorem. 

proposed constructions. The first, where the square on the hypotenuse is allowed to 
overlap the squares on the legs, is due to Gu Guanguailg in 1892, reported in [17]. 
The second, less straightfoi~x7ard but ~vithout overlapping squares, is froin [31]. 

The Sea Island Mathematical Manual 

Chapter Nine of the Nine Clznpters included surveying probleins involving one 
unl<no~vn distance or length. However, nlost real sumeying probleills involve several 
such unkno\nls. For example, we inight ~vish to determine the height of, and distance 
to, a mountain which is inaccessible, perhaps because it is on an island we cannot 
reach. Liu Hui pointed out that we can do this by malung two obseivations, and 
worked out the geometry of how to make two observations yield the unknown 
distances. If we wish also to know the height of a pine tree on top of that inaccessible 
mountain, we can do it \ ~ i t h  three obseivations. His compilation of solutions to nine 
illustrative sui-veying probleins became the Sea Islnncl Matlzenzntical Mnizr~nl.The 
mountain on the sea island is the first problem; the pine tree is the second. [ l ]  and 
[24] include coinplete translations with commentary. 

Here is the sea island problem: 

For loolung at a sea island, erect ht7o poles of the same height, 30 chi, the 
distance between the front and rear pole being 6000 chi. Assuine that the 
rear pole is aligned ~vitll the front pole. Move away 738 clzi from the front 
pole and observe the peal< of the island froin ground level; it is seen that 
the tip of the front pole coincides wit11 the peak. Move bachvard 762 clzi 
from the rear pole and observe the peal< from ground level again; the tip 
of the rear pole also coiilcides wit11 the peal<. IVhat is the height of the 
island and how far is it from the front pole? 

Answer: The height of the island is 7530 chi. It is 184500 clzi from the 
front pole. [24, p. 201 

The extant versioil of the Sen Island Mnnunl contains only the problems, answers, 
and recipes for obtaining the answers, exactly as in the Nine Chapters. Liu Hui also 
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gave proofs for the correctness of his inethods, but these proofs and the accompanying 
diagranls were not presenled, and the best we can do is offer plausible reconstruc- 
tions. Using the notation of FIGURE 5 ,  Liu's method for solution corresponds to the 
fornlulas 

FIGURE 5 

The height of a sea island 


'\Ve must obtain these forinulas using only sinlilar right triangles, since there was no 
concept of angle, inuc11 less any trigonometl-y, in ancient Chinese mathematics, nor 
was there any use of sinlilar triangles other than right triangles. Here is one method. 
Since A ABD - A DGH,  

Since A ABC - ACEF. 

x b 
- -, so xn, = b y  

y a2 

Subtracting these equations gives x(a, - a,) = bcl, \vhich leads to the expression for 
the height, and then substitution gives the distance. 

S~vetz[24]gives a very plausible alternate derivation \vhich avoids the use of similar 
triangles completely. It is based on a Ienlnla about rectailgIes ~vhich is illustrated in 
FIGURE6a: if we divide a rectangle into four snlaller rectangles at any point on its 

(a )  A rectangular lemma. (b) A rectangular proof. 

FIGURE 6 
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diagonal, then the hvo rectangles shaded in the figure illust have the sanle area. This 
follows froin a dissection argument. The diagonal divides the rectangle into hvo 
congruent triangles. From these triangles, subtracting the collgruent triangles labeled 
A and B yields the given rectangles. If we apply this result h ~ i c e  to FIGURE 6b, the 
equal \\\ rectangles give equation (11, and the equal /// rectangles give equation 
(2). This method is also discussed in [9]. 

The Sen Islnizcl J4nnual was certainly not the deepest mathematics wvhich Liu Hui 
did, but it probably had the greatest illlinediate impact. Recall that the lzingdoill of 
\Vei Mias continually at war during the time of Liu's w~orli. Suil;e)ing was inlportant for 
maps ~rhich supported w77ar, as well as the adillinistrative bureaucracy. Keedham 
reports that the \Vei general Deilg Ai always "estimated the heights and distances, 
ineasuring by finger breadths before drawing a plan of the place and fixing the 
position of his camp." [24, p. 151 There is an interesting parallel in the \Vest. Swetz 
notes that Greek arnlies had a specific reason for wanting to calculate unlinowvn height 
at an inaccessible distance, quoting Heron of Alexandria: 

How77 inany tinles in the attacli of a stronghold have we arrived at the foot 
of the rainparts and found that we inade our ladders and other necessaiy 
iillplelneilts for the assault too short, and have coilsequeiltly been defeated 
simply for not knowing how to use the Dioptera for measuring the heights 
of walls; such heights have to he illeasured out of the range of eileiny 
inissiles. [24, p. 281 

The Calculation of n 

Recall that prohlenl 1.32 of the Nine Cl~npters gave the correct forillula for the area 
of a circle, hut used a value of three for n-. Liu points out that for a circle of radius 
one, the area of a regular dodecagon inscribed in the circle is three, so the area of the 
circle nlust he greater thail three. He then proceeds to estiinate the area of the circle 
illore exactly by calculating the areas of inscribed 3.2"-gons as follonls. In a circle of 
radius r ,  let c,, he the length of the side of an inscribed 11-gon, a,, he the length of the 
perpendicular froin the center of the circle to the side of the 12-gon, and S,, he the 
area of the a-gon. See FIGURE 7. Then we can calculate inductively 

C6 = r ,  

a,?= 4 1 - 2  - ( ~ , , / 2 ) ,, 

C2,?  = + (I" ( L , , ) ~) 4 ~ ! , / 2 ) ~  - , 

1

S2,,= -12I"C,, .2 

The last formula is clever, and followvs from noticing that each of the 217 triangles 
nlaking up the 2n-go11 can be thought of as hawing base r and height c,,/2. Moreover, 
FIGURE that the area S of the circle satisfies 7 S ~ I O ~ T ~ S  

S,!, < S < S,, + 2(S2,, - S,,) = 2S2,, - S,, .  

Liu considers wvhat happeils ~vhen  we take n larger and larger "the finer one cuts, 
the sinaller the leftover; cut after cut until no illore cut is possible, then it coincides 
wit11 the circle and there is no leftover." [20,p. 34'71 As 17 gets large, S,,, approaches 
the area of the circle and nc,, approaches the circumference, so we have justified the 
Nine Chapters clainl that the area of a circle is one-half the product of its radius and 
circumference. 
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FIGURE 7 

The calculatioll of T 


Taking r = 10, Liu Hui carries out the calculations, keeping 6-place accuracy, up to 
)I = 96, heilce approxinlating the circle by a 192-gon. He coilcludes that 

and suggests that for practical calculations it should be enough to use 7i = 3.14. Either 
Liu or soine inteil2olating later coininelltator carried the coinputatioil as far as 
tz = 1536 and obtained the approxiination 7i=  3.1416. See [13] and [28] for treat- 
ineilts of the intricacies of this kind of calculation. [13] gives a trailslatioil of Liu Hui's 
text. 

If we coinpare this treatineilt to Archimedes' in L\fens~irementof n Circle, the 
siinilarities are striking, although the differences are also interesting. Archimedes, of 
course, included a forinal proof by the method of exhaustion required by the 
coilventioils of Greek geoinetiy. However, the subdivision inethod and the inducti\7e 
calculation are essentially the same. Archiinedes obtained his upper bouild by 
considering circuinscribed polygons, instead of Liu's clever inethod of using only 
illscribed polygons. Archiinedes used 96-gons to obtain his fainous estimate 

Two centuries later Zu Chongzl~i (429-500 A.D.) carried Liu Hui's approach 
farther. Using a polygon of 24576 sides, ZLI obtained the bounds 3.1415926 < 7i < 
3.1415927. See [13] and, for a different view, [28]. In addition, Zu recon~nlended hvo 
rational approxin~atioils for 7 i :  Archimedes' value of 22/7, and the reinarkably 
accurate 355/113 = 3.1415929. 

Zu's inethod for arriving at his rational approxiiliatioil for 7i is not known. One 
line of reasoiling \voulcl be to start wit11 Zu's value of 3.1415926 and tbe approxiination 

= 3; = 3.1428571, \vhich is slightlv too large, and ask for a fraction which, d e n  
added to 3, ~vould give a better approximation than f does. It is easy to see that the 

fractions Lie should check are those of the forin A.U'e the11 ti? to find k so that 
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The solution k = 16 gives the rational approximation 3f i  = $. For another possible 
approach, see [17]. 

Zu Choi~gzhi's approxiination of rr was not bettered until al-Kaslli of Samarltand 
coinputed rr to 14 decinlal places in the early 15th century. The rational approxiina- 
tion 355/113 Mias not discovered in Europe until the late lGth centuiy. 

The Volume of Pyramids 

Chapter Five of the Nine Chapters gives correct formulas for the \7olumes of a 
nuillher of pyramidal solids. For example, the voluille of the clztr-tz~ng,a truncated 
rectangular pyramid illustrated in FIGURE 11, is correctly given as 

Did you lznow that formula? Froill it follo\vs the volunle of a rectangular pyramid (put 
c = cl = O), a truncated square pyramid (put n = b ,  c = cl), and a rectangular wedge 
(put d = 0). 

Liu Hui gives justifications for these forn~ulas based on dissection argunlents and a 
reinarlzahle limit argument. I mill mostly follow the translation and discussioil in [30]. 
Liu's argument uses three special solids: a gintzclu, \vhich is a triangular prism, a 
ynngnzn, which is a rectangular pyramid whose vertex is above one corner of its base, 
and a bienno, \vhich is a tetrahedron wit11 three successive perpendicular edges. See 
FIGURES8, 9, a i d  10. 

Liu starts bvith the case of a cube, which he dissects into three coilgrueilt yarlglnn, 
to conclude that the voluine of a regular ynngtrzn is 1 /3  the volume of the cube. See 
FIGLRE8. Since a yntzgrnn and a bienao fit together to inake a ginnclzi, \vllich is 1/2 of 
the cube, the voluine of the bietzno must be 1/6 the voluine of the cube Alterna-
tively, we could get this result by dissecting the ynngtnn into two congrueilt bienno 

FIGURE 8 

Dissecting a cube and a qicitlclu 


Now suppose that instead of a cube, we start with an n X b X c rectangular box. \Ire 
can still dissect it into three ynngtnn, but now these ynngtnn will have 3 different 
shapes, so it is not clear that their voluines are equal. IVe can also dissect a ynngttza 
into two bienno, or assemble a bienno and a ynngmn to inalte a qintzdzc, but again, 
the bienno have 3 different shapes, and it is not clear that their voluines are equal. 
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FIGURE 9 
Three t p e s  of yangiilcr and bieizao 

Using the notatioil in FIGURE9, what the dissections do show is that 

Yf l+ Yr,+ Yc = abc 


I;, + B ,  = abc/2  ITf1= BI,+ B, 


Y b  + Br,= nbc/2  Yr,= B ,  + B, 


Yc + B, = abc/2  Y ,  = B ,  + B b .  


However, this does not give enough inforination to evaluate the volumes. 
Liu proceeds to prove that ITI,= 2 Bb (and similarly I;, = 2 B,, Y ,  = 2 B,), which 

does allow us to conclude that the voluine of each yangtna is nbc /3  and that of each 
bienno is nbc/6 .  His inetllod is sl~owm in FIGLRE10. Dissect ITb at the nlidpoiilts of its 
sides into a rectangular box, 2 qinnclz~, and two half-size copies of ITr1(call then1 IT;). 
Similarly, dissect BI, into 2 qinndu and 2 half-size copies of Bb (call thein Bb). Since 
the box and 2 qianclz~have hvice the voluine of 2 qiancltl, we only need to show that 

FIGURE 10 

Dissecting a ynngiizn and a bienao 
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1'; = 2 Bb. Liu notes that these new figures together have 1 / 4  the voluine of the 
original figures, since the two sinall yongrtzn and bielzno fit together to form two 
qinndu whose total voluine is nbe/8.  Repeat the dissection on each of the new 
figures, and continue. At each stage the voluine we have not yet accounted for is 1 / 4  
that of the previous stage. Liu expresses what happens in the liinit as follows: 

The snlaller they are halved, the finer are the remaining dimensions. The 
extreme of fineness is called minute. That which is minute is xvithout form. 
SVhen it is explained in this way, why concern oneself \vith the remainder? 
[30,p,  1731 

This is not a modern liinit argument, of course. Liu seems to be saying that if we cut 
the figures into sinaller and sinaller pieces, we \\dl come to a point where the pieces 
are so small that they no longer have forin or volume. (The terins translated as 
'minute' and 'form' are pl~ilosophical terms from the Too Te Clzing.) Still, we 
recognize the liinit idea, and the recursive dissection arguinent has a delightful 
elegance. For some of the philosophical issues, see [7] ,  [16] ,  and [30] .  For a 
coinparison to the Greelz proof in Euclid's Elements, see [4] .  

Knowing the voluine of a yoizgi)zo, we call now derive the volumes of the other 
solids by dissection. For example, let's verifjl the formula for the volume of the 
clzu-tmg. Dissect it as in FIGURE 11 into a box L, four qinndt~of two different shapes 
Q, and Qb,  and four yongilzn 1'.If we do this to six copies of the clz~l-tzctzg,we have 

FIGURE 11 
The volullle of a chu-tung. 
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Nowv reasseinble these, as in FIGURE 12, into 

tsvo boxes of voluine lzccl: 2 L 

one box of voluine lzacl: L + 4Qb 
one box of voluine hbc: L + 4 Q ,  

hvo boxes of voluine Iznb: 2 L + 8Q, + 8Qb + 24Y. 

Notice that for the last step we need to replace some of the Y,, yangmn with yangiiw 
of other shapes, but this is allowable since we have showvn that these yangnza all have 
the same volume. 

Finally, Liu derives the voluine of a cone from the voluine of a square pyramid, and 
the voluine of a truilcated cone from the voluine of a truncated square pyramid, by 
using what we know as "Cavalieri's principle," after Bonaventura Cavalieri 
(1398-1647). TVe can state this priilciple as follows: 

The voluines of hvo solids of the saine height are equal if their planar 
cross-sections at equal heights always have equal areas; if the areas of the 
planar cross-sections at equal heights always have the same ratio, then the 
voluines of the solids also have this ratio. 

Liu inscribes the truncated cone, for example, in a truncated square pyrainid of the 
saine height, and then says that since each cross-section consists of a circle inscribed 
in a square, the ratio of the voluines of the truncated cone to the truncated pyramid 
must be in the same ratio as the area of a circle to its circuinsciibed square, i.e., ~ / 4  
[TI. 

The Volume of a Sphere 

Recall that probleln 4.24 of the Nine Clzapte~s gave the voluine of a sphere as &c13. 
Liu points out that this is incorrect, even using the inaccurate value of 3 for n.  He 
explaiils the error as follows. Let a cylinder be inscribed in a cube of side cl, and 
consider the cross-section of this figure by any plane peiyendicular to the axis of the 
cylinder. The plane will cut the cyliilder in a circle of diameter d,  inscribed in a 
square of side cl. The ratio of these areas is n/4. Since this is true for each 
cross-section, the saine ratio must hold for the voluines, so that the voluine of the 
cylinder is :d3. Now consider the sphere of diameter d inscribed in the cylinder. If 

we assume, incorrectly, that the ratio of the volume of the sphere to the volume of the 

cylinder is also 11/4, then ive get that the volume of the sphere is $ d 3 ,  ~vhich is the 

Nine Chapters result (using .ir = 3). 
How do we know that the ratio of the voluines of the sphere and cylinder cannot be 

n/4? Liu's ingenious argument is as follows. Inscribe a second cylinder in the cube, 
wit11 axis orthogonal to that of the first cylinder, and consider the intersection of these 
two cylinders. Liu called this intersection a "double box-lid." See FIGURE 12. Since the 
sphere is contained in both cylinders, it is contained in the box-lid. R/Ioreover, 
consider any cross-section of this figure by a plane peiyendicular to the axis of the 
box-lid. The cross-section of the sphere will be a circle, inscribed in the square \i~l~ich 
is the cross-section of the box-lid, so again the ratio of the areas is 11/4, and since this 
is true for all cross-sections, the ratio of the volumes of the sphere and the box-lid 
must also be 11/4. Now the box-lid is certainly smaller than the original cylinder, so 
the ratio of the volumes of the sphere and the cyliilder must be strictly less than n/4. 
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FIGURE 12 
Cross sections of a sphere i11 a double box-lid in a cube. 

This lovely arguinent using Cavalieri's principle shows that the Wine Chapters 
forinula is wrong, but in order to use it to find the correct voluine of the sphere, we 
would need to be able to find tlie volume of the double box-lid. Liu ti-ied to do this, 
but could not. He recorded his fiilure in a poem, translated by D. B. SVagner as 
"The Geometer's Frustration:" 

Looli inside the cube 


And outside the box-lid; 

Though tlie diminution increases, 

It doesn't quite fit. 


The marriage preparatioiis are complete; 
But square and circle wrangle, 

Thicli and thin iilalce treacherous plots, 
They are incompatible. 

I \i<sh to give my huinble reflections, 
But fear that I will iiliss the correct principle; 
I dare to let the doubtful points stand, 
SVaiting for one who can expound them. [29, p. 721 

The wait turned out to be two centuries, and the person Liu waited for was Zu 
Gengzhi, the soil of Zu Cliongzhi. Stories associated wit11 Zu Gengzhi are reininiscent 
of those told about Archiinedes and inany i~latheniaticians since then. For instance, 
"he studied so hard when lie was still very young that he did not even notice when it 
thundered; when lie was thinking about problenis while walking he bumped into 
people." [15, p. 821 

Zu Gengzhi argues as follows. Consider one eighth of the double box-lid inscribed 
in the cube of side r = c1/2. See FIGURE13. If a plane is passed through this figure at 
height h ,  it intersects tlie cube in a square of side r,  and tlie box-lid in a square of 
side s. By tlie gou-gu theorein, r L  s' = h'. Hence tlie area of the gnomon outside 
tlie box-lid is h'. 
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Now Zu Gengzhi considers another solid of height r whose cross-section at height 
h is h': an inverted ynngmn cut froin a cube of side r. See FIGURE 13.The part of the 
cube outside the box-lid, and this ynngnan, have all their corresponding cross-sections 
of the same area. Zu then states his version of Cavalieri's principle in verse: 

If volumes are constructed of piled up blocks [areas], 

And corresponding areas are equal, 

Then the volumes cannot be unequal. [29, p. 751 


FIGURE 13 
The volu~lleoutside a box-lid is Cavalieri-equivalent to a yn~tgn~n 

Since the voluine of the ynngnan is i r "  and the voluine outside the box-lid must be 
the same, the volume inside the box-lid must be !r3. Putting the eight pieces 
together, we get that the voluine of the complete double box-lid inust be two-thirds of 
the cube containing it, id3.  Remembering Liu Hui's result that the sphere takes up 
~ / 4of the double box-lid, we finally get the correct formula for the volume of a 
sphere of diameter d: 

Following Liu, Zu ends his discussion with a poem, "The Geometer's Triumph:" 

The proportions are extremely precise. 
And my heart shines. 
Chang Heng copied the ancient, 
Smiling on posterity; 
Liu Hui followed the ancient, 
Having no time to revise it. 
Now what is so difficult about it? 
One need only think. [29, pp. 76-77] 

One could argue that Liu Hui did not use the full po\ver of Cavalieri's principle, 
since he only applied it to the situation of one figure inside another, where the 
cross-sections \tiere circles inscribed in squares. But certainly Zu Gengzhi gave a clear 
statement of the principle and used its power inore than a nlillenniuin before 
Cavalieri [14]. 
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There was another precursor, of course. Archimedes had calculated the voluine of a 
sphere, and in Propositioil 15 of The AIethocZ, he calculated the voluine of the 
perpendicular intersection of h7o cylinders of the same radius. The arguineilt for 
Proposition 15 is in the part of The ;Metlzod \vhich has not survived, but it is not 
difficult to recoilstruct the reasoiling from other dernonstratioils earlier in the book. 
Archiinedes thought of voluines as made up of planar slices and balanced them on a 
lever against the slices of other \loluines. It is an extension of Cavalieri's principle. For 
a general discussion of the use of versions of Cavalieri's principle in Greek geoinetiy, 
see [lo]. 

Conclusion 

After the theoretical phase of Chinese inatheinatics in the 3rd through 5th centuries, 
repiesented by Liu Hui, Zu Chongzhi, and Zu Gengzhi, proofs and justifications 
began to be less important. Although the work of Liu Hui was still taught in the 
official School for the Soils of the State, instructioil began to einphasize rote learning 
of inethods rather than justificatioas. Liu's diagrams from the cominentaiy on the 
Nine Chnpte?-s and arguments from the Sen Islnncl A4nnz~n1, and Zu Chongzhi's work, 
\tiere lost. The next, brief flowering of creative inatheinatics in China did not happeil 
until the 13th centuiv, with nzatheinaticians like Qiil Jiushao, Li Zhi, Zhu Shijie, and 
Yang Hui. After the thirteenth century, Chinese i~lathenlatics declined again until the 
period of contact wit11 the \Vest. 

It is interesting to speculate why Chinese inatheinatics, wit11 such a powerf~ll 
calculatioilal base and such a strong theoretical start, did not develop a coherent, 
ongoing mathematical tradition. blartzloff [17] and S~vetz [25] review a nuinber of 
possible reasons: einphasis on practical applications, rote learning, and reverence for 
established ideas which stifled creati~ity, uneven state support, and low social status 
accorded to inatheinaticiails coinpared to scholars in the l~uinanities. 

Nevertheless, the reinarkable achievements of Chinese mathematics in its first 
golden age are worthy of our interest and admiration. 
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