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Liu Hui and the First Golden Age
of Chinese Mathematics

PHILIP D. STRAFFIN, JR.

Beloit College
Beloit, W1 53511

Introduction

Very little is known of the life of Liu Hui, except that he lived in the Kingdom of Wei
in the third century A.D., when China was divided into three kingdoms at continual
war with one another. What is known is that Liu was a mathematician of great power
and creativity. Liu’s ideas are preserved in two works which survived and became
classics in Chinese mathematics. The most important of these is his commentary,
dated 263 A.D., on the Jiuzhang suanshu, the great problem book known in the West
as the Nine Chapters on the Mathematical Art. The second is an independent work on
mathematics for surveying, the Haidao suanjing, known as the Sea Island Mathemati-
cal Manual.

In this paper I would like to tell you about some of the remarkable results and
methods in these two works. I think they should be more widely known, for several
reasons. First, we and our students should know more about mathematics in other
cultures, and we are probably less familiar with Chinese mathematics than with the
Greek, Indian, and Islamic traditions more directly linked to the historical develop-
ment of modern mathematics. Second, Western mathematicians who do know
something about the Chinese tradition often characterize Chinese mathematics as
calculational and utilitarian rather than theoretical. Chinese mathematicians, it is said,
developed clever methods, but did not care about mathematical justification of those
methods. For example,

Mathematics was overwhelmingly concerned with practical matters that
were important to a bureaucratic government: land measurement and
surveying, taxation, the making of canals and dikes, granary dimensions,
and so on... Little mathematics was undertaken for its own sake in China.
(2, p. 26]

While there is justice in this generalization, Liu Hui and his successors Zu
Chongzhi and Zu Gengzhi were clearcut exceptions. Their methods were different
from those of the Greeks, but they gave arguments of cogency and clarity which we
can honor today, and some of those arguments involved infinite processes which we
recognize as underlying the integral calculus.

My final reason is that I think mathematical genius should be honored wherever it
is found. I hope you will agree that Liu Hui is deserving of our honor.

To understand the context of Liu’s work, we must first consider the state of Chinese
mathematical computation in the third century A.D. We will then look at the general
nature of the Nine Chapters and Liu’s commentary on it, and at Liu’s Sea Island
Mathematical Manual. 1 will then focus on three of Liu’s most remarkable achieve-
ments in geometry—his calculation of 7, his derivation of the volume of pyramidal
solids, and his work on the volume of a sphere and its completion by Zu Gengzhi.
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Chinese Calculation in the First Century A.D.

From at least the period of the Warring States (475-221 B.C.) a base ten positional
number system was in common use in China [12]. Calculations were done using rods
made from bone or bamboo, on a counting board marked off into squares. The
numerals from 1 to 9 were represented by rods, as in Ficure 1. Their placement in
squares, from left to right, represented decreasing powers of ten. Rods 1'epresenting
odd powers of ten were rotated 90° for clarity in distinguishing the powers. A zero was
represented simply by a blank square, called a kong, where the marking into squares
prevented the ambiguity sometimes present in, say, the Babylonian number system.
P e o T T
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FIGURE 1
Numerals and the division algorithm.

There were efficient algorithms for addition, subtraction, multiplication, and divi-
sion. For example, the division algorithm is shown in Ficure 1, except that you should
imagine the operations being done rapidly with actual sticks. Notice the close
relationship to our modern long division algorithm, although subtraction is easier
because sticks are physically removed. In fact, it is identical to the division algorithm
given by al-Khwarizmi in the ninth century and later transmitted to Europe, raising
the complicated problem of possible transmission through India to the West [12]. (See
[17] for a conservative discussion.)

Notice how the answer 7265 ends up with 726 in the top row, and then 4 above 9.
This led Chinese calculators to represent fractions by placing the numerator above the
denominator on the counting board. By the time of the Nine Chapters there was a
completely developed arithmetic of fractions: they could be multiplied, divided,
compared by cross multiplication, and reduced to lowest form using the “Euclidean

algorithm” to find the largest common factor of the numerator and denominator.

Addition was performed as %+ % = ”dbtlbc, and then the fraction was reduced if

necessary. In the Nine Chapters, 160 of the 246 problems involve computations with
fractions [11].

We will see that Chapter Eight of the Nine Chapters solves systems of linear
equations by the method known in the West as “Gaussian Elimination” after C. F.
Gauss (1777-1855), which, of course, involves subtracting one row of numbers from
another. In the course of such calculations, it is inevitable that negative numbers will
arise. This presented no problems to Chinese calculators: two colors of rods were
used, and correct rules were given for manipulating the colors. Liu Hui suggested in
his commentary on the Nine Chapters that negative numbers be treated abstractly:
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When a number is said to be negative, it does not necessarily mean that
there is a deficit. Similarly, a positive number does not necessarily mean
that there is a gain. Therefore, even though there are red (positive) and
black (negative) numerals in each column, a change in their colors
resulting from the operations will not jeopardize the calculation. [17,
pp. 201-202]

Perhaps most remarkably, Chinese mathematicians had developed by the time of
the Nine Chapters efficient algorithms for computing square roots and cube roots of
arbitrarily large numbers. The algorithm for the square root computed the root digit
by digit, by the same method which used to be taught in American schools before the
coming of the calculator. Martzloff [17] works through an example, and Lam [11]
shows how it would look on a counting board. The algorithm for finding cube roots
was similar, although, of course, more complicated.

In other words, by the time of the Nine Chapters the Chinese had developed a
number system and a collection of calculational algorithms essentially equivalent to
our modern system, with the exception of decimal fractions.

Nine Chapters on the Mathematical Art

Nine Chapters on the Mathematical Art is a compilation of 246 mathematical
problems loosely grouped in nine chapters. Some of its material predates the great
book-burning and burial-alive of scholars of 213 B.C., ordered by emperor Shih
Huang-ti of the Qin dynasty. Indeed, Liu Hui writes in the preface of his commen-
tary:

In the past, the tyrant Qin burnt written documents, which led to the
destruction of classical knowledge ... Because of the state of deterioration
of the ancient texts, Zhang Cang and his team produced a new version. ..
filling in what was missing. [17, p. 129]

It is believed that the Nine Chapters were put in their final form sometime before
100 A.D. It “became, in the Chinese tradition, the mandatory reference, the classic of
classics.” [17, p. 14] At the time of this writing there is no complete English
translation of the Nine Chapters, although there are many scholarly Chinese editions,
and translations into Japanese, German, and Russian. An English translation by J. N.
Crossley and Shen Kangsheng is in preparation, to be published by Springer-Verlag.
For summaries, see [11], [17], [18], [21].

The format of the Nine Chapters is terse: a problem, its answer, and a recipe for
obtaining the answer. Usually no justification is given for the method of solution. Just
the facts.

Chapter One has many problems on the arithmetic of fractions, and a section on
computing areas of planar figures, with correct formulas for rectangles, triangles, and
trapezoids. Here’s a problem on the area of a circle:

1.32: There is a circular field, circumference 181 bu and diameter 604 bu. Find the
area of the field.
Answer: 11 mu 9055 bu. (1 mu = 240 bu)

Method: Mutually multiply half of the circumference and half of the diameter to
obtain the area in bu. Or multiply the diameter by itself, then by 3 and divide
by 4. Or multiply the circumference by itself and divide by 12. [11, p. 13]
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The first method is correct, but the data of the problem and the other two methods
assume that the ratio of the circumference of a circle to its diameter, which we call 7,
is three. This assumption is made throughout the Nine Chapters.

Chapter Two is a series of commodity exchange problems involving proportions.
Chapter Three concerns problems of “fair division.” The solutions given may not
seem very fair to us:

3.8: There are five persons: Dai Fu, Bu Geng, Zan Niao, Shang Zao, and Gong Shi.
They pay a total of 100 gian. A command desired that the highest rank pays the
least, and the successive ones gradually more. Find the amount each has to pay.

Answer: Dai Fu pays 81% gian; Bu Geng pays 1033¢ gian; Zan Niao pays 14+
gian; Shang Zao pays 21152 gian; Gong Shi pays 43135 gian. [11, p. 21]

The method calls for dividing the cost in proportions #:7:%:3:1, which gives

practice in adding fractions, but badly exploits the lowest rank person!
Chapter Four contains problems asking for the calculation of square roots and cube
roots. The last problem of Chapter Four is

4.24: There is a sphere of volume 16441866437500 chi. Find the diameter.

Answer: 14300 chi.

Method: Put down the volume in chi, multiply by 16 and divide by 9. Extract
the cube root of the result to get the diameter of the sphere. [11, p. 23]

This gives the formula V = {5d® for the volume of a sphere in terms of its diameter,
which isn’t correct even if we take 7= 3.

Chapter Five asks for the volumes of a number of solids, including several different
kinds of pyramids, frustums of pyramids, cones and their frustums, and a wedge with a
trapezoidal base. The given formulas are all correct, but no hint is given of how they
were derived.

Chapter Six deals with fair division in a much more realistic way than the problems
in Chapter Three. There are problems on transporting grain, taxation, and irrigation.
There are also some less realistic problems which make one wonder how Chinese
students must have felt about “word problems”:

6.14: There is a rabbit which walks 100 bu before it is chased by a dog. When the dog
has gone 250 bu, it stops and is 30 bu behind the rabbit. If the dog did not
stop, find how many more bu it would have to go before it reaches the rabbit.

Answer: 107+ bu. [11, p. 28]

Chapter Seven has a number of problems involving two linear equations in two
unknowns, usually solved by the method of “false position.” Problems in Chapter
Eight involve solving n linear equations in n unknowns for n up to 5. The method of
solution, described in detail, is Gaussian elimination on the appropriate matrix
represented on the counting board. The Chinese called this method fangcheng. See
[17] for an extended example. Perhaps the most interesting problem is

8.13: There are five families which share a well. 2 of A’s ropes are short of the well’s
depth by 1 of B’s ropes. 3 of B’s ropes are short of the depth by 1 of C’s ropes. 4
of C’s ropes are short by 1 of D’s ropes. 5 of D’s ropes are short by 1 of E’s
ropes. 6 of E’s ropes are short by 1 of A’s ropes. Find the depth of the well and
the length of each rope.

Answer: The well is 721 cun deep. A’s rope is 265 cun long. B’s rope is 191 cun
long. C’s rope is 148 cun long. D’s rope is 129 cun long. E’s rope is 76 cun
long. [11, p. 37]
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Notice that this problem involves five equations and six unknowns, and thus is
indeterminate. Liu Hui pointed out that the solution gives only the necessary
proportions for the lengths. It is also the smallest solution in integer lengths.

The problems in Chapter Nine involve right triangles and the “Pythagorean”
theorem, which had long been independently known in China, where it was called the
gou-gu theorem [26]. No proof is given of this theorem, or of a correct formula for
the diameter of the inscribed circle in a right triangle. Similar right triangles are used
to solve surveying problems involving one unknown distance or length.

Liu Hui’s Commentary

The Nine Chapters presents its solution methods without justification. Liu Hui in his
commentary set himself the goal of justifying those methods. One reason was
practical, as Liu wrote about the Nine Chapters’ use of 3 for the ratio of the
circumference of a circle to its diameter:

Those who transmit this method of calculation to the next generation
never bother to examine it thoroughly but merely repeat what they learned
from their predecessors, thus passing on the error. Without a clear
explanation and definite justification it is very difficult to separate truth
from fallacy. [20, p. 349]

Another reason has to do with seeing and appreciating the logical structure of
mathematics:

Things are related to each other through logical reasons so that like
branches of a tree, diversified as they are, they nevertheless come out of a
single trunk. If we elucidate by prose and illustrate by pictures, then we
may be able to attain conciseness as well as comprehensiveness, clarity as
well as rigor. [20, p. 355]

In this section, we’ll begin our examination of Liu’s attempt to attain “clarity as well as
rigor” by looking at five of his contributions.

Problems in Chapter Four of the Nine Chapters require taking square roots using
the square root algorithm. To take the square root of a 2k + 1 or 2k + 2 digit number
N, the algorithm begins by finding the largest number A, = a, X 10, where a, is a
digit, such that A3 <N. Then compute N, =N —A}. Now find the largest A, =
a, X 10571 such that A(2A,+ A,) <N,, and form N,=N, — A,(2A,+ A,). Con-
tinue in this manner. If N is a perfect square, its square root will be the (k + 1)-digit
number S =aya, - a;.

Liu Hui first gives a geometric argument, similar to arguments used in Greek
geometric algebra, to explain why the algorithm works. Consider Ficure 2, which is
not to scale. (Liu’s original figures were all lost, but most of them are easy to
reconstruct from his verbal descriptions.) From a square of area N, we first subtract a
square of side A, then the L-shaped figure of width A,, which the Greeks called a
gnomon, then a gnomon of width A,, and so on until we exhaust the square.

Well, at least we exhaust the square if N is a perfect square, as it is in many of the
Nine Chapters problems. (Some of the problems involve rational perfect squares, for
instance N = 564752+ in problem 4.15.) But Liu also asks what happens if N is not a
perfect square: “In this case it is not sufficient to say what the square root is about by
simply ignoring the [remaining] gnomon.” [7, p. 211] For integral but non-square N,
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N

A, A A4, -
FIGURE 2
Geometry of the square root algorithm.

the square root algorithm yields N =S + R, where 0 <R <2S + 1. Liu gives two
ways of approximating the square root. The first is to take a rational approximation
using

R
tTos+1 <

N <s+ 2

§ 35

The second is even more interesting. If we continue the algorithm on the counting
board past the last digit of N, we get

_ A1 | Mo
\/;L_~aoal...ak+ 10 + 100 +

The ancient Chinese had names for the fractions 1,/10* for k up to five. Liu suggests
continuing the calculation down to “those small numbers for which the units do not
have a name,” and if necessary adding a fraction to @, 5 to get even greater accuracy
[11]. In other words, it is not stretching very much to say that Liu Hui invented
decimals; he certainly invented their calculational equivalent. We will see that he
needed this kind of accuracy for his calculation of 7. Liu also gave a justification for
the cube root algorithm using a three-dimensional figure similar to Ficure 2.

Chapter Eight of the Nine Chapters solved systems of linear equations using the
fangcheng method on a counting board matrix: multiples of rows (actually columns,
since the equations were set up vertically on the counting board) were systematically
subtracted from other rows to reduce the matrix to triangular form. Liu Hui explains
that the goal of this method is to reduce to a minimum the number of computations
needed to find the solution: “generally, the more economic a method is, the better it
is.” In fact, Liu compares two different fangcheng methods for solving problem 8.18
by counting the number of counting board operations needed in each method [17].
Surely this is the first example in history of an operation count to compare the
computational efficiency of two algorithms.
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Finally, Chapter Nine of the Nine Chapters presented, without justification,
solutions to a number of problems involving right triangles. Liu Hui justified these
solutions by a series of ingenious “dissection” arguments, based on the principles that
congruent figures have the same area, and that if we dissect a figure into a finite
number of pieces, its area is the sum of the areas of the pieces. I'll give two examples.

The solution to problem 9.16 finds the diameter d of a circle inscribed in a right
triangle with legs @ and b and hypotenuse ¢ by

2ab

d= a+b+c

Liu’s dissection proof of this result can be reconstructed as in Ficure 3 [20]. See it?

For the second example, consider the famous gou-gu theorem that for a right
triangle as above, a® +b*=c? For this theorem, Lius verbal description of his
proof is as follows:

The shorter leg multiplied by itself is the red square, and the longer leg
multiplied by itself is the blue square. Let them be moved about so as to
patch each other, each according to its type. Because the differences are
completed, there is no instability. They form together the area of the
square on the hypotenuse. [31, p. 71]

o=

d
FIGURE 3
Diameter of a circle inscribed in a right triangle.

Clearly, Liu had a dissection proof of the gou-gu theorem. Just as clearly, the
verbal description does not enable us to reconstruct Liu’s diagram. Ficure 4 shows two
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c c
blue
red blue
b c ¢ a
a
b [4

T a

a

red

(@) (b)
FIGURE 4

Dissection proofs of the gou-gu theorem.

proposed constructions. The first, where the square on the hypotenuse is allowed to
overlap the squares on the legs, is due to Gu Guanguang in 1892, reported in [17].
The second, less straightforward but without overlapping squares, is from [31].

The Sea Island Mathematical Manual

Chapter Nine of the Nine Chapters included surveying problems involving one
unknown distance or length. However, most real surveying problems involve several
such unknowns. For example, we might wish to determine the height of, and distance
to, a mountain which is inaccessible, perhaps because it is on an island we cannot
reach. Liu Hui pointed out that we can do this by making two observations, and
worked out the geometry of how to make two observations yield the unknown
distances. If we wish also to know the height of a pine tree on top of that inaccessible
mountain, we can do it with three observations. His compilation of solutions to nine
illustrative surveying problems became the Sea Island Mathematical Manual. The
mountain on the sea island is the first problem; the pine tree is the second. [1] and
[24] include complete translations with commentary.
Here is the sea island problem:

For looking at a sea island, erect two poles of the same height, 30 chi, the
distance between the front and rear pole being 6000 chi. Assume that the
rear pole is aligned with the front pole. Move away 738 chi from the front
pole and observe the peak of the island from ground level; it is seen that
the tip of the front pole coincides with the peak. Move backward 762 chi
from the rear pole and observe the peak from ground level again; the tip
of the rear pole also coincides with the peak. What is the height of the
island and how far is it from the front pole?

Answer: The height of the island is 7530 chi. It is 184500 chi from the
front pole. [24, p. 20]

The extant version of the Sea Island Manual contains only the problems, answers,
and recipes for obtaining the answers, exactly as in the Nine Chapters. Liu Hui also



VOL. 71, NO. 3, JUNE 1998 ‘ 171

gave proofs for the correctness of his methods, but these proofs and the accompanying
diagrams were not preserved, and the best we can do is offer plausible reconstruc-
tions. Using the notation of Ficure 5, Liu’s method for solution corresponds to the
formulas

bd a,d
h=x+b= +5b, y= 2
17 Gy a; —ay
A
X
C D
B v P
b b b
y E a, F G o O H
FIGURE 5

The height of a sea island.

We must obtain these formulas using only similar right triangles, since there was no
concept of angle, much less any trigonometry, in ancient Chinese mathematics, nor
was there any use of similar triangles other than right triangles. Here is one method.
Since AABD ~ADGH,

x b
y—+g=ﬂ_1’ soxal=by+bd. (1)
Since A ABC ~ ACEF,
x b
§=a—2, SO xag=by. (2)

Subtracting these equations gives x(a, — a,) = bd, which leads to the expression for
the height, and then substitution gives the distance.

Swetz [24] gives a very plausible alternate derivation which avoids the use of similar
triangles completely. It is based on a lemma about rectangles which is illustrated in
Ficure 6a: if we divide a rectangle into four smaller rectangles at any point on its

y 4

I d 1

a;

(a) A rectangular lemma. (b) A rectangular proof.
FIGURE 6
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diagonal, then the two rectangles shaded in the figure must have the same area. This
follows from a dissection argument. The diagonal divides the rectangle into two
congruent triangles. From these triangles, subtracting the congruent triangles labeled
A and B yields the given rectangles. If we apply this result twice to Ficure 6b, the
equal \\\ rectangles give equation (1), and the equal /// rectangles give equation
(2). This method is also discussed in [9].

The Sea Island Manual was certainly not the deepest mathematics which Liu Hui
did, but it probably had the greatest immediate impact. Recall that the kingdom of
Wei was continually at war during the time of Liu’s work. Surveying was important for
maps which supported war, as well as the administrative bureaucracy. Needham
reports that the Wei general Deng Ai always “estimated the heights and distances,
measuring by finger breadths before drawing a plan of the place and fixing the
position of his camp.” [24, p. 15] There is an interesting parallel in the West. Swetz
notes that Greek armies had a specific reason for wanting to calculate unknown height
at an inaccessible distance, quoting Heron of Alexandria:

How many times in the attack of a stronghold have we arrived at the foot
of the ramparts and found that we made our ladders and other necessary
implements for the assault too short, and have consequently been defeated
simply for not knowing how to use the Dioptera for measuring the heights
of walls; such heights have to be measured out of the range of enemy
missiles. [24, p. 28]

The Calculation of o

Recall that problem 1.32 of the Nine Chapters gave the correct formula for the area
of a circle, but used a value of three for 7. Liu points out that for a circle of radius
one, the area of a regular dodecagon inscribed in the circle is three, so the area of the
circle must be greater than three. He then proceeds to estimate the area of the circle
more exactly by calculating the areas of inscribed 3-2"-gons as follows. In a circle of
radius 7, let ¢, be the length of the side of an inscribed n-gon, a, be the length of the
perpendicular from the center of the circle to the side of the n-gon, and S, be the
area of the n-gon. See Ficure 7. Then we can calculate inductively
Ce=T,

a4y = \/rz - (0'1/2)2 >
Cop = \/(Cr1/2)2 + (1‘ - (1,1)2 >

1
Sy, = IC, .

The last formula is clever, and follows from noticing that each of the 2n triangles
making up the 2n-gon can be thought of as having base r and height ¢, /2. Moreover,
Ficure 7 shows that the area S of the circle satisfies

S?.n <8< Sn + 2(8211 - Sn) = 282:1 =S

Liu considers what happens when we take n larger and larger: “the finer one cuts,
the smaller the leftover; cut after cut until no more cut is possible; then it coincides
with the circle and there is no leftover.” [20, p. 347] As n gets large, S,, approaches
the area of the circle and nc, approaches the circumference, so we have justified the
Nine Chapters claim that the area of a circle is one-half the product of its radius and
circumference.

n*
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c,/2

FIGURE 7
The calculation of .

Taking r = 10, Liu Hui carries out the calculations, keeping 6-place accuracy, up to
n =96, hence approximating the circle by a 192-gon. He concludes that

3.1410 < 7 < 3.1427,

and suggests that for practical calculations it should be enough to use 7 = 3.14. Either
Liu or some interpolating later commentator carried the computation as far as
n = 1536 and obtained the approximation 7= 3.1416. See [13] and [28] for treat-
ments of the intricacies of this kind of calculation. [13] gives a translation of Liu Hui’s
text.

If we compare this treatment to Archimedes’ in Measurement of a Circle, the
similarities are striking, although the differences are also interesting. Archimedes, of
course, included a formal proof by the method of exhaustion required by the
conventions of Greek geometry. However, the subdivision method and the inductive
calculation are essentially the same. Archimedes obtained his upper bound by
considering circumscribed polygons, instead of Liu’s clever method of using only
inscribed polygons. Archimedes used 96-gons to obtain his famous estimate

3% << 3%, or 3.1409 < 7 < 3.1428.

Two centuries later Zu Chongzhi (429-500 A.D.) carried Liu Hui’s approach
farther. Using a polygon of 24576 sides, Zu obtained the bounds 3.1415926 < 7 <
3.1415927. See [13] and, for a different view, [28]. In addition, Zu recommended two
rational approximations for m: Archimedes’ value of 22/7, and the remarkably
accurate 355/113 = 3.1415929.

Zu’s method for arriving at his rational approximation ?—‘;’g for 7 is not known. One
line of reasoning would be to start with Zu’s value of 3.1415926 and the approximation
2 = 31 = 3.1428571, which is slightly too large, and ask for a fraction which, when
added to 3, would give a better approximation than + does. It is easy to see that the

Wﬁ . We then try to find k so that

fractions we should check are those of the form

1 k

7 Tk+1

_ L
49k + 7

U

1428571 — .1415926 = .0012645,

=~ 0012645, 49k + 7= T791.
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The solution k = 16 gives the rational approximation 375 = 2. For another possible

approach, see [17].

Zu Chongzhi’s approximation of 7 was not bettered until al-Kashi of Samarkand
computed 7 to 14 decimal places in the early 15th century. The rational approxima-
tion 355 /113 was not discovered in Europe until the late 16th century.

The Volume of Pyramids

Chapter Five of the Nine Chapters gives correct formulas for the volumes of a
number of pyramidal solids. For example, the volume of the chu-tung, a truncated
rectangular pyramid illustrated in Ficure 11, is correctly given as

%(2ab +ad +be + 2cd).

Did you know that formula? From it follows the volume of a rectangular pyramid (put
c¢=d =0), a truncated square pyramid (put @ =b, ¢ = d), and a rectangular wedge
(put d =0).

Liu Hui gives justifications for these formulas based on dissection arguments and a
remarkable limit argument. I will mostly follow the translation and discussion in [30].
Liu’s argument uses three special solids: a giandu, which is a triangular prism, a
yangma, which is a rectangular pyramid whose vertex is above one corner of its base,
and a bienao, which is a tetrahedron with three successive perpendicular edges. See
Ficures 8, 9, and 10.

Liu starts with the case of a cube, which he dissects into three congruent yangma,
to conclude that the volume of a regular yangma is 1/3 the volume of the cube. See
Ficure 8. Since a yangma and a bienao fit together to make a giandu, which is 1/2 of
the cube, the volume of the bienao must be 1/6 the volume of the cube. Alterna-
tively, we could get this result by dissecting the yangma into two congruent bienao.

FIGURE 8
Dissecting a cube and a giandu.

Now suppose that instead of a cube, we start with an @ X b X ¢ rectangular box. We
can still dissect it into three yangma, but now these yangma will have 3 different
shapes, so it is not clear that their volumes are equal. We can also dissect a yangma
into two bienao, or assemble a bienao and a yangma to make a giandu, but again,
the bienao have 3 different shapes, and it is not clear that their volumes are equal.
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.............................

B,

a 3 a

FIGURE 9
Three types of yangma and bienao.

Using the notation in Ficure 9, what the dissections do show is that
Y, +Y,+Y,=abc
Y, +B,=abc/2 Y, =B,+B,
Y, +B,=abc/2  Y,=B,+B,
Y. +B,=abc/2  Y,=B,+B,.

However, this does not give enough information to evaluate the volumes.

Liu proceeds to prove that Y, =2B; (and similarly Y, =2B,, Y, =2B,), which
does allow us to conclude that the volume of each yangma is abc/3 and that of each
bienao is abc /6. His method is shown in Ficure 10. Dissect Y;, at the midpoints of its
sides into a rectangular box, 2 giandu, and two half-size copies of Y, (call them Y}).
Similarly, dissect B, into 2 giandu and 2 half-size copies of B, (call them Bj). Since
the box and 2 giandu have twice the volume of 2 giandu, we only need to show that

FIGURE 10
Dissecting a yangma and a bienao.
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Y, =2Bj,. Liu notes that these new figures together have 1/4 the volume of the
original figures, since the two small yangma and bienao fit together to form two
giandu whose total volume is abc/8. Repeat the dissection on each of the new
figures, and continue. At each stage the volume we have not yet accounted for is 1,/4
that of the previous stage. Liu expresses what happens in the limit as follows:

The smaller they are halved, the finer are the remaining dimensions. The
extreme of fineness is called minute. That which is minute is without form.
When it is explained in this way, why concern oneself with the remainder?

[30, p. 173]

This is not a modern limit argument, of course. Liu seems to be saying that if we cut
the figures into smaller and smaller pieces, we will come to a point where the pieces
are so small that they no longer have form or volume. (The terms translated as
‘minute’ and ‘form’ are philosophical terms from the Tao Te Ching.) Still, we
recognize the limit idea, and the recursive dissection argument has a delightful
elegance. For some of the philosophical issues, see [7], [16], and [30]. For a
comparison to the Greek proof in Euclid’s Elements, see [4].

Knowing the volume of a yangma, we can now derive the volumes of the other
solids by dissection. For example, let’s verify the formula for the volume of the
chu-tung. Dissect it as in Ficure 11 into a box L, four giandu of two different shapes
Q, and Q,, and four yangma Y. If we do this to six copies of the chu-tung, we have

6L +120Q, + 120, + 24Y.

2%

FIGURE 11
The volume of a chu-tung.
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Now reassemble these, as in Ficure 12, into

two boxes of volume hed: 2L
one box of volume had: L+ 4Q,
one box of volume hbc: L +40Q,
two boxes of volume hab: 2L+ 8Q, +8Q; + 24Y.

Notice that for the last step we need to replace some of the Y, yangma with yangma
of other shapes, but this is allowable since we have shown that these yangma all have
the same volume.

Finally, Liu derives the volume of a cone from the volume of a square pyramid, and
the volume of a truncated cone from the volume of a truncated square pyramid, by
using what we know as “Cavalieri’s principle,” after Bonaventura Cavalieri
(1598-1647). We can state this principle as follows:

The volumes of two solids of the same height are equal if their planar
cross-sections at equal heights always have equal areas; if the areas of the
planar cross-sections at equal heights always have the same ratio, then the
volumes of the solids also have this ratio.

Liu inscribes the truncated cone, for example, in a truncated square pyramid of the
same height, and then says that since each cross-section consists of a circle inscribed
in a square, the ratio of the volumes of the truncated cone to the truncated pyramid
must be in the same ratio as the area of a circle to its circumscribed square, i.e., 7/4

[7].

The Volume of a Sphere

Recall that problem 4.24 of the Nine Chapters gave the volume of a sphere as 15d°.
Liu points out that this is incorrect, even using the inaccurate value of 3 for 7. He
explains the error as follows. Let a cylinder be inscribed in a cube of side d, and
consider the cross-section of this figure by any plane perpendicular to the axis of the
cylinder. The plane will cut the cylinder in a circle of diameter d, inscribed in a
square of side d. The ratio of these areas is /4. Since this is true for each
cross-section, the same ratio must hold for the volumes, so that the volume of the
cylinder is gd? Now consider the sphere of diameter d inscribed in the cylinder. If

we assume, incorrectly, that the ratio of the volume of the sphere to the volume of the

cylinder is also /4, then we get that the volume of the sphere is ’]T—sz3, which is the
Nine Chapters result (using 7 = 3).

How do we know that the ratio of the volumes of the sphere and cylinder cannot be
m/4? Liu’s ingenious argument is as follows. Inscribe a second cylinder in the cube,
with axis orthogonal to that of the first cylinder, and consider the intersection of these
two cylinders. Liu called this intersection a “double box-lid.” See Ficure 12. Since the
sphere is contained in both cylinders, it is contained in the box-lid. Moreover,
consider any cross-section of this figure by a plane perpendicular to the axis of the
box-lid. The cross-section of the sphere will be a circle, inscribed in the square which
is the cross-section of the box-lid, so again the ratio of the areas is /4, and since this
is true for all cross-sections, the ratio of the volumes of the sphere and the box-lid
must also be 7/4. Now the box-lid is certainly smaller than the original cylinder, so
the ratio of the volumes of the sphere and the cylinder must be strictly less than /4.
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FIGURE 12
Cross sections of a sphere in a double box-lid in a cube.

This lovely argument using Cavalieri’s principle shows that the Nine Chapters
formula is wrong, but in order to use it to find the correct volume of the sphere, we
would need to be able to find the volume of the double box-lid. Liu tried to do this,
but could not. He recorded his failure in a poem, translated by D. B. Wagner as
“The Geometer’s Frustration:”

Look inside the cube

And outside the box-lid;

Though the diminution increases,
It doesn’t quite fit.

The marriage preparations are complete;
But square and circle wrangle,

Thick and thin make treacherous plots,
They are incompatible.

I wish to give my humble reflections,

But fear that I will miss the correct principle;

I dare to let the doubtful points stand,

Waiting for one who can expound them. [29, p. 72]

The wait turned out to be two centuries, and the person Liu waited for was Zu
Gengzhi, the son of Zu Chongzhi. Stories associated with Zu Gengzhi are reminiscent
of those told about Archimedes and many mathematicians since then. For instance,
“he studied so hard when he was still very young that he did not even notice when it
thundered; when he was thinking about problems while walking he bumped into
people.” [15, p. 82]

Zu Gengzhi argues as follows. Consider one eighth of the double box-lid inscribed
in the cube of side r =d /2. See Ficure 13. If a plane is passed through this figure at
height h, it intersects the cube in a square of side r, and the box-lid in a square of

side s. By the gou-gu theorem, r? —s*=h? Hence the area of the gnomon outside
the box-lid is A®.
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Now Zu Gengzhi considers another solid of height  whose cross-section at height
h is h*: an inverted yangma cut from a cube of side r. See Ficure 13. The part of the
cube outside the box-lid, and this yangma, have all their corresponding cross-sections
of the same area. Zu then states his version of Cavalieri’s principle in verse:

If volumes are constructed of piled up blocks [areas],
And corresponding areas are equal,
Then the volumes cannot be unequal. [29, p. 75]

FIGURE 13
The volume outside a box-lid is Cavalieri-equivalent to a yangma.

Since the volume of the yangma is +r3, and the volume outside the box-lid must be
the same, the volume inside the box-lid must be 5r°. Putting the eight pieces
together, we get that the volume of the complete double box-lid must be two-thirds of
the cube containing it, d°. Remembering Liu Hui’s result that the sphere takes up
m/4 of the double box-lid, we finally get the correct formula for the volume of a
sphere of diameter d:

_ M2 T o
V—43d—6d.

Following Liu, Zu ends his discussion with a poem, “The Geometer’s Triumph:”

The proportions are extremely precise,
And my heart shines.

Chang Heng copied the ancient,
Smiling on posterity;

Liu Hui followed the ancient,

Having no time to revise it.

Now what is so difficult about it?

One need only think. [29, pp. 76-77]

One could argue that Liu Hui did not use the full power of Cavalieri’s principle,
since he only applied it to the situation of one figure inside another, where the
cross-sections were circles inscribed in squares. But certainly Zu Gengzhi gave a clear

statement of the principle and used its power more than a millennium before
Cavalieri [14].
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There was another precursor, of course. Archimedes had calculated the volume of a
sphere, and in Proposition 15 of The Method, he calculated the volume of the
perpendicular intersection of two cylinders of the same radius. The argument for
Proposition 15 is in the part of The Method which has not survived, but it is not
difficult to reconstruct the reasoning from other demonstrations earlier in the book.
Archimedes thought of volumes as made up of planar slices and balanced them on a
lever against the slices of other volumes. It is an extension of Cavalieri’s principle. For
a general discussion of the use of versions of Cavalieri’s principle in Greek geometry,
see [10].

Conclusion

After the theoretical phase of Chinese mathematics in the 3rd through 5th centuries,
represented by Liu Hui, Zu Chongzhi, and Zu Gengzhi, proofs and justifications
began to be less important. Although the work of Liu Hui was still taught in the
official School for the Sons of the State, instruction began to emphasize rote learning
of methods rather than justifications. Liu’s diagrams from the commentary on the
Nine Chapters and arguments from the Sea Island Manual, and Zu Chongzhi’s work,
were lost. The next, brief flowering of creative mathematics in China did not happen
until the 13th century, with mathematicians like Qin Jiushao, Li Zhi, Zhu Shijie, and
Yang Hui. After the thirteenth century, Chinese mathematics declined again until the
period of contact with the West.

It is interesting to speculate why Chinese mathematics, with such a powerful
calculational base and such a strong theoretical start, did not develop a coherent,
ongoing mathematical tradition. Martzloff [17] and Swetz [25] review a number of
possible reasons: emphasis on practical applications, rote learning, and reverence for
established ideas which stifled creativity, uneven state support, and low social status
accorded to mathematicians compared to scholars in the humanities.

Nevertheless, the remarkable achievements of Chinese mathematics in its first
golden age are worthy of our interest and admiration.

Acknowledgment. I wish to thank the mathematics department of the University of Colorado at Boulder
for their hospitality during the writing of this paper, and Victor Katz, Ranjan Roy, and Frank Swetz for
suggestions which have improved its quality.

Note. [8] and [21-27] contain very accessible introductions to Chinese mathematics. [15] and [17] are
comprehensive modern histories of Chinese mathematics which make extensive use of Chinese research.
[18] and [19] are older histories which are still good reading,
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