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The Evolution of Mathematics in Ancient China 


Early Chinese mathematical accomplishments 
reveal arithmetic and algebraic approaches 
based on sophisticated inductive knowledge. 

FRANK s m  
The Pennsylvania State University 
Middletown, PA 17057 

A popular survey book on the development of mathematics has its text prefaced by the following 
remarks: 

Only a few ancient civilizations, Egypt, Babylonia, India and China, possessed what may be 
called the rudiments of mathematics. The history of mathematics and indeed the history of 
western civilization begins with what occurred in the first of these civilizations. The role of 
India will emerge later, whereas that of China may be ignored because it was not extensive 
and moreover has no influence on the subsequent development of mathematics.' 

Even most contemporary works on the history of mathematics reinforce this impression, either by 
neglecting or depreciating Chinese contributions to the development of mathematics.' Whether by 
ignorance or design, such omissions limit the perspective one might obtain concerning both the 
evolution of mathematical ideas and the place of mathematics in early societies. In remedying this 
situation, western historians of mathematics may well take heed of Whittier's admonition: 

We lack but open eye and ear 

To find the Orient's marvels here.3 


Language barriers may limit this quest for information; however, a search of Enghsh language sources 
will reveal that there are many "marvels" in Chinese mathematics to be considered. 

Legend and Fact 

The origins of mathematical activity in early China are clouded by mysticism and legend. 
Mythological Emperor Yu is credited with receiving a divine gift from a Lo river tortoise. The g f t  in 
the form of a diagram called the Lo shu is believed to contain the principles of Chinese mathematics, 
and pictures of Yii's reception of the Lo shu have adorned Chinese mathematics books for centuries. 
This fantasy in itself provides some valuable impressions about early Chinese science and mathemat- 
ics. Yii was the patron of hydraulic engineers; his mission was to control the flood-prone waters of 
China and provide a safe setting in which a water-dependent civilization could flourish. The users of 
science and mathematics in China were initially involved with hydraulic engineering projects, the 
construction of dikes, canals, etc., and with the mundane tasks of logistically supporting such projects. 
A close inspection of the contents of the Lo shu reveals a number configuration (FIGURE 1) which 
would be known later in the West as a magic square. For Chinese soothsayers and geomancers from 
the Warring State period of Chinese history (403-221 B.C.) onward, this square, comprised of 
numbers, possessed real magical qualities because in it they saw a plan of universal harmony based on 
a cosmology predicated on the dualistic theory of the Yin and the Yang." 
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When stripped of ritualistic sigmficance, the principles used in constructing this first known magic 
square are quite simple and can best be described by use of diagrams as shown in FIGURE2. The 
construction and manipulation of magic squares became an art in China even before the concept was 
known in the W e ~ t . ~  Variations of the Lo shu technique were used in constructing magic squares of 
higher order with perhaps the most impressive square being that of order nine; see FIGURE3. 

Construct a natural square. Distort it into a diamond. Exchange comer elements. Compress back into a square. 

Start with a natural square (a) then fold each row into a square (b) of order 3 (example using row 1) and apply the Lo 
shu technique (c). The nine resulting magic squares of order 3 (d) are then positionally ordered according to the 
correspondence of the central element in theiu bottom rows with the numbers of the Lo shu, i.e., 4,9,2; 3,547;8,1,6. 

While the Lo shu provides some intriguing insights into early mathematical thinking, its sigmfi- 
cance in terms of potential scientific or technological achievement is negbgible. Historically, the first 
true evidence of mathematical activity can be found in numeration symbols on oracle bones dated 
from the Shang dynasty (14th century B.C.). Their numerical inscriptions contain both tally and code 
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symbols, are clearly decimal in their conception, and employ a positional value system. The Shang 
numerals for the numbers one through nine were: 

By the time of the Han Dynasty (2nd century B.C.4th century A.D.), the system had evolved into a 
codified notation that lent itself to computational algorithms carried out with a counting board and 
set of rods. The numerals and their computing-rod configurations are 

1 2 3 4 5 6 7 8 9 
- ---- - - 1 -- for coefficients of l6"k2 n= 1,2...- = =  

I 11 111 I1I]I T m for coefficients of 16"-' n = 1,2... . 
Thus in this system 4716 would be represented as IIII =!= I l.6 x was(Occasionally the symbol 
used as an alternative to 3.) 

Counting boards were divided into columns designating positional groupings by 10. The resulting 
facility with which the ancient computers could carry out algorithms attests to their full understand- 
ing of decimal numeration and computation. As an example, consider the counting board method of 
multiplying 2 three-digit numbers, as illustrated in FIGURE 4. The continual indexing of partial 
products to the right as one multiplies by smaller powers of ten testifies to a thorough understanding 
of decimal notation. In light of such evidence, it would seem that the Chinese were the first society to 
understand and efficiently utilize a decimal numeration ~ y s t e m . ~  If one views a popular schematic of 
the evolution of our modern system of numeration (FIGURE 5) and places the Chinese system in the 

Counting board Accompanying
rod computations 

(multiplier) 
2 X 3 = 6  

(product) 
2 X 5 =  -10 

(multiplicand) 
70 

(answer) 

FIG^ 4. 
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L I 
Shang numerals (1300 BC) 

i 
I I 

Brahmi numerals (300 BC) 
L 

Indian (Gvalior) 

Sanskrit-Devanagari (Indian) 

1 r 3 + y l b 7 ~3 1 1 1 r ~ f o ~ ~ ~ 9 . j  

West Arabic (gubar) East Arabic (still used 

in Turkey) 


1 1 th century (apices) 

1 . 1  J L G  / G - S ~ *  ~ a ~ t j I t ~ 7 ~ 9 .1 
I 

15th century 16th centiry ( ~ i r e r )  

appropriate chronological position, an interesting hypothesis arises, namely that the numeration 
system commonly used in the modern world had its origins 34 centuries ago in Shang China! 

The Systematization of Early Chinese Mathematics 

The oldest extant Chinese text containing formal mathematical theories is the Arithmetic Classic of 
the Gnomon and the Circular Paths of Heaven, [Chou pei suan ching]. Its contents date before the third 
century B.C. and reveal that mathematicians of the time could perform basic operations with 
fractions according to modern principles employing the concept of common denominator. They were 
knowledgeable in the principles of an empirical geometry and made use of the "Pythagorean 
theorem." A diagram (see FIGURE 6) in the Chou pei presents the oldest known demonstration of the 
validity of this theorem. This diagram, called the hsuan-thu in Chinese, illustrates the arithmetic-geo- 
metric methodology that predominates in early Chinese mathematical thinking and shows how 
arithmetic and geometry could be merged to develop algebraic processes and procedures. If the 
oblique square of the hsuan-thu is dissected and the pieces rearranged so that two of the four 
congruent right triangles are joined with the remaining two to form two rectangles, then the resulting 
figure comprised of two rectangles and one small square have the same area as their parent square. 
Further, since the new configuration can also be viewed as being comprised of two squares whose 
sides are the legs of the right triangles, this figure demonstrates that the sum of the squares of the legs 
of a right triangle is equal to the square of the hypotenuse.8 The processs involved in this intuitive, 
geometric approach to obtain algebraic results was called chi-chu or "the piling up of square^."^ 

The next historical text known to us is also a Han work of about the third century B.C. It is the 
Nine Chapters on the Mathematical Art, [Chiu chang suan shu], and its influence on oriental 
mathematics may be likened to that of Euclid's Elements on western mathematical thought. The Chiu 
chang's chapters bear such titles as surveying of land, consultations on engineering works, and 
impartial taxation, and confirm the impression that the Chinese mathematics of this period centered 
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on the engineering and bureaucratic needs of the state. Two hundred and forty-six problem situations 
are considered, revealing in their contents the fact that the Chinese had accumulated a variety of 
formulas for determining the areas and volumes of basic geometric shapes. Linear equations in one 
unknown were solved by a rule of false position. Systems of equations in two or three unknowns were 
solved simultaneously by computing board techniques that are strikingly similar to modem matrix 
methods. While algebraists of the ancient world such as Diophantus or Brahmagupta used various 
criteria to distinguish between the variables in a linear equation,'' the Chinese relied on the 
organizational proficiency of their counting board to assist them in this chore. Using a counting 
board to work a system of equations allowed the Chinese to easily distinguish between different 
variables. 

Consider the following problem from the Chiu chang and the counting board approach to its 
solution. 

Of three classes of cereal plants, 3 bundles of the first; 2 of the second and 1 of the third will 
produce 39 tou of corn after threshing; 2 bundles of the first; 3 of the second and 1 of the 
third will produce 34 tou; while 1 of the first, 2 of the second and 3 of the third will produce 
26 tou. Find the measure of corn contained in one bundle of each class." 

(1 tou =10.3 liters) 

This problem would be set up on the counting board as: 

1 2 3 1st class grain 
2 3 2 2nd class grain 
3 1 1 3rd class grain 

26 34 39 Number of tou 

Using familiar notation this matrix of numbers is equivalent to the set of equations 

which are reduced in their tabular form by appropriate multiplications and subtraction to 

3x+2y+  z =30 36x =333 
36y =I53 and 36y = 153 

362 =99 362 =99. 

Thus x =333/36, y = 153/36 and z =99/36. 
A companion problem from the Chiu chang involves payment for livestock and results in the 

system of simultaneous equations: 

-2x+5y-13z=1OOO 
3x-9y+3z=o 

-5x+6y+8z= -600. 

Rules provided for the solution treat the addition and subtraction of negative numbers in a modern 
fashion; however, procedures for the multiplication and division of negative numbers are not found in 
a Chinese work until the Sung dynasty (+ 1299). Negative numbers were represented in the 
computing scheme by the use of red rods, while black computing rods represented positive numbers. 
Zero was indicated by a blank space on the counting board. This evidence qualifies the Chinese as 
being the first society known to use negative numbers in mathematical calculations. 

The Chou pei contains an accurate process of extracting square roots of numbers. The ancient 
Chinese did not consider root extraction a separate process of mathematics but rather merely a form 
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Counting board layout Accompanying rod computations Explanations 

2 (quotient) 166500 200 is chosen 
-120000=(200X 600) as the first 

166536 (dividend) 46500 partial 
-8000 =(200X 40) quotient 

648 (divisor) 38500 
-1600=(200X8) 
36900 

50 is chosen 
as the second 
partial 
quotient 

7 is chosen 
as the third 
partial 
quotient 

process is finished 

of division.12 Let us examine the algorithm for division and its square root variant. The division 
algorithm is illustrated in FIGURE7 for the problem 166536t648. The Chinese technique of root 
extraction depends on the algebraic proposition 

( a + b + ~ ) ~ = a ~ + 2 a b + b ~ + 2 ( a + b ) c + c ~  

=a2+(2a+b)b+(2[a+b]+c)c  

which is geometrically substantiated by the diagram given in FIGURE8. This proposition is incorpo- 
rated directly into a form of division where fl= a  + b+  c. The counting board process for 
extracting the square root of 55225 is briefly outlined in FIGURE9. Root extraction was not limited to 
three digit results, for the Chinese were able to continue the process to several decimal places as 
needed. Decimal fractions were known and used in China as far back as the 5th century B.C. Where a 
root was to be extracted to several decimal places, the computers achieved greater accuracy by use of 
the formulae $'% = $* /10k.13 Cube root extraction was conceived on a similar geometric-al- 
gebraic basis and performed with equal facility. 

Historians of mathematics often devote special consideration to the results obtained by ancient 
societies in determining a numerical value for m as they believe that the degree of accuracy achieved 
supplies a comparative measure for gauging the level of mathematical skill present in the society. On 
the basis of such comparisons, the ancient Chinese were far superior to their contemporaries in 
computational mathematical ability. Aided by a number system that included the decimalization of 
fractions and the possession of an accurate root extraction process the Chinese had obtained by the 
first century a value of m of 3.15147. The scholar Liu Hui in a third century commentary on the Chiu 
chang employed a "cutting of the circle method"--determining the area of a circle with known radius 
by polygonal approximations-to determine m as 3.141024. A successor, Tsu Chung-chih, refined the 
method in the fifth century to derive the value of m as 355/113 or 3.1415929.14 This accuracy was not 
to be arrived at in Europe until the 16th century. 
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Algebraic Significance Numerical entries on board 

A geometric "proof' (FIGURE 8) of the algebraic 
proposition (see p. 14) which justifies the calculations 
(FIGURE9) leading to -=235. The 1 in the 
upper box represents an indexing rod that determines 
the decimal value of the divisors used. At the beginning 
of the process, it is moved to the left in jumps of two 
decimal places until it establishes the largest power of 
ten that can be divided into the designated number. 
After each successful division, the rod is indexed two 
positional places to the right. 

Trends in Chinese Algebraic Thought 

While the Chinese computational ability was indeed impressive for the times, their greatest 
accomplishments and contributions to the history of mathematics lay in algebra. During the Han 
period, the square and cube root extraction processes were being built upon to obtain methods for 
solving quadratic and other higher order numerical equations. The strategy for extending the square 
root process to solve quadratic equations was based on the following line of reasoning. If x2 =289, 10 
would be chosen as a first entry approximation to the root, then 

Let the second entry of the root be represented by y ;  thus, x=lO+y or (10+y)2=289 which, if 
expanded, gives the quadratic equation y2+20y - 189=O. By proceeding to find the second entry of 
the square root of 289, 7, we obtain the positive root for the quadratic y2+20y - 189=0.15 

By the time of Sung Dynasty in the 13th century, mathematicians were applying their craft to solve 
such challenging problems as: 

This is a round town of which we do not know the circumference or diameter. There are four 
gates (in the wall). Three li from the northern (gate) is a high tree. When we go outside of the 
southern gate and turn east, we must walk 9 li before we see the tree. Find the circumference 
and the diameter of the town. (1 li =.644 kilometers) 

If the diameter of the town is allowed to be represented by x2, the distance of the tree from the 
northern gate, a, and the distance walked eastward, b, the following equation results. 

For the particular case cited above, the equation becomes 
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xI0+ 15x8 +72x6-864x4- 1 1,664x2 -34,992 =O. 

Sung algebraists found the diameter of the town to be 9 li.I6 
The earliest recorded instance of work with indeterminate equations in China can be found in a 

problem situation of the Chiu chang where a system of four equations in five unknowns results.17 A 
particular solution is supplied. A problem in the third century Mathematical Classic of Sun Tzu, [Sun 
Tzu suan ching,] concerns linear congruence and supplies a truer example of indeterminate analysis. 

We have things of which we do not know the number; if we count by threes, the remainder is 
2; if we count by fives, the remainder is 3; if we count by sevens, the remainder is 2. How 
many things are there?18 

In modern form, the problem would be represented as: 

Sun's solution is given by the expression 

which when analysed gives us the first application of the Chinese Remainder Theorem. 
If ml, . . .,mk are relatively prime in pairs, there exist integers x for which simultaneously x =al  

(modm,), ...,x -ak (modmk). All such integers x are congruent modulo m =mlm2...mk. The ex- 
istence of the Chinese Remainder Theorem was communicated to the west by Alexander Wylie, an 
English translator and mathematician in the employ of the nineteenth century Chinese court. Wylie 
recorded his findings in a series of articles, "Jottings on the Science of the Chinese; Arithmetic" 
which appeared in the North China Herald (Aug.-Nov.) 1852. The validity of the theorem was 
questioned until it was recognized as a variant of a formula developed by Gauss.I9 

Perhaps the most famous Chinese problem in indeterminate analysis, in the sense of its transmis- 
sion to other societies, was the problem of the "hundred fowls" (ca 468). 

A cock is worth 5 ch'ien, a hen 3 ch'ien, and 3 chicks 1 ch'ien. With 100 ch'ien we buy 100 
fowls. How many cocks, hens, and chicks are there? 

(ch'ien, a small copper coin) 

The development of algebra reached its peak during the later part of the Sung and the early part of 
the following Yuan dynasty (13th and 14th centuries). Work with indeterminate equations and higher 
order numerical equations was perfected. Solutions of systems of equations were found by using 
methods that approximate an application of determinants, but it wasn't until 1683 that the Japanese 
Seki Kowa, building upon Chinese theories, developed a true concept of determinants. 

Work with higher numerical equations is facilitated by a knowledge of the binomial theorem The 
testimony of the Chiu chang indicates that its early authors were familiar with the binomial expansion 
(a +b)3, but Chinese knowledge of this theorem is truly confirmed by a diagram (FIGURE10) 
appearing in the 13th century text Detailed Analysis of the Mathematical Rules in the Nine Chapters. 
[Hsiang chieh chiu chang suan fa.]. It seems that "Pascal's Triangle" was known in China long before 
Pascal was even born. 

While mathematical activity continued in the post-Sung period, its contributions were minor as 
compared with those that had come before. By the time of the Ming emperors in the 17th century, 
western mathematical influence was finding its way into China and the period of indigenous 
mathematical accomplishment had come to an end. 

Conclusions 

Thus, if comparisons must be made among the societies of the pre-Christian world, the quality of 
China's mathematical accomplishments stands in contention with those of Greece and Babylonia, and 
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during the period designated in the West as pre-Renaissance, the sequence and scope of mathematical 
concepts and techniques originating in China far exceeds that of any other contemporary society. The 
impact of this knowledge on the subsequent development of western mathematical thought is an issue 
that should not be ignored and can only be resolved by further research. In part, such research will 
have to explore the strength and vitality of Arabic-Hindu avenues of transmission of Chinese 
knowledge westward. The fact that western mathematical traditions are ostensibly based on the 
logico-deductive foundations of early Greek thought should not detract from considering the merits 
of the inductively-conceived mathematics of the Chinese. After all, deductive systemization is a luxury 
afforded only after inductive and empirical experimentation has established a foundation from which 
theoretical considerations can proceed. Mathematics, in its primary state, is a tool for societal 
survival; once that survival is assured, the discipline can then become more of an intellectual and 
aesthetic pursuit. Unfortunately, this second stage of mathematical development never occurred in 
China. This phenomenon-the fact that mathematics in China, although developed to a high art, was 
never elevated further to the status of an abstract deductive science-is yet another fascinating aspect 
of Chinese mathematics waiting to be explained. 
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